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Introduction 

The goal of this study is to investigate the impact of greening sites on the incidence of assault crimes involving 

firearms by employing a spatial-temporal modeling approach. By analyzing paired greening and control sites, we 

aim to assess the association between the presence of greening sites and the occurrence of such crimes, contributing 

to our understanding of the potential role of greening initiatives in crime prevention strategies. 

Data  

This study utilizes three distinct datasets. Firstly, crime incident data for Indianapolis, IN was obtained from the 

Indianapolis Metropolitan Police Department.  This dataset includes details on the type, location, and time of crimes 

committed in the city and covers the period from 2010 to 2021. We focus on crimes related to firearms, such as Part 

I violent crime, assault with a firearm, and homicide. Secondly, we have compiled a list of 58 greenspaces and 110 

control spaces, each with recorded latitude and longitude coordinates. Additionally, we have collected data on 

neighborhood characteristics, including poverty rate, percentage of non-white population, and renters. Lastly, our 

study incorporates several social vulnerability-related variables that may impact crime rates, such as the percentage 

of households living below the poverty line, households with no vehicles, and households eligible for food stamps, 

to account for the potential impact of social vulnerability on crime rates, and to assess the equity implications of 

greening projects. 

Preliminary Analysis 

Our preliminary analysis indicates fluctuations in the number and types of 

crimes over the years. Notably, there has been a significant surge in gun-related 

crimes between 2019 and 2021 (Table 1). In addition, since the accepted 

greenspaces and control spaces are in close proximity and on irregular locations 

(Figure 1), failing to account for their spatial locations may lead to misleading 

conclusions about the impact of greening initiatives. Furthermore, our 

comparison of social vulnerability conditions between greenspaces and 

rejected spaces highlights significant disparities such as the proportion of 

the population over 65 years old and the non-white population (Table 2), 

emphasizing the need to fully comprehend the relationships between 

greening initiatives, crime rates, and social vulnerability. This 

understanding is crucial for the design and implementation of effective public health interventions. 

  

 
Figure 1. Distribution of 
Greenspaces (Green) and 
Rejected Sites (Red) 



 
Table 1. Summary by Crime Type 

Year P1 ALL P1 
Violent 

P1 
Property 

Assaults Assaults w/ 
Firearm 

Homicides 

2010 50,651 8,830 41,821 5,300 880 86 
2011 51,653 8,321 43,332 4,810 981 89 
2012 52,825 8,066 44,759 4,253 1,367 92 
2013 52,617 10,016 42,600 5,667 1,377 121 
2014 50,874 10,470 40,404 6,103 1,620 129 
2015 51,664 11,131 40,532 6,663 2,027 141 
2016 49,887 11,266 38,618 6,704 2,080 146 
2017 46,448 10,797 35,645 6,678 2,043 149 
2018 44,651 10,550 34,101 6,819 2,232 156 
2019 38,596 8,546 30,042 5,305 2,205 137 
2020 39,533 9,545 29,977 6,611 3,718 209 
2021 38,639 9,225 29,410 6,630 4,112 245 

 
Table 2. comparisons of social vulnerability conditions between the control and treatment groups 

Variable: Mean (SD) Control Greening 
Percent of HH below 200% poverty level 0.52 (0.20) 0.55 (0.20) 
Percent of HH with no vehicle 0.18 (0.10) 0.18 (0.09) 
Percent of population underage 18 21.08 (8.08) 22.69 (8.99) 
Percent of population over age 65 10.34 (3.75) 10.30 (5.28) 
Percent of population with a disability 16.88 (4.96) 16.90 (4.68) 
Percent of HH with limited English 2.17 (2.73) 2.67 (3.38) 
Percent of non-white population 42.84 (26.70) 39.63 (23.85) 
Percent of HH eligible for food stamps 23.71 (12.70) 27.07 (12.60) 
Percent of population that are renters 55.90 (14.45) 55.27 (14.92) 
Homeowners who pay more than 30% of their income on 
mortgage payments 

29.83 (10.15) 31.22 (10.04) 

Population with no high school diplomas 18.86 (10.60) 22.55 (11.13) 

 
 

Method 

We initially formed 36 pairs of greening sites and control sites that exhibited similar background characteristics in 

terms of population. This pairing was essential to ensure comparability and minimize confounding factors, thus 

allowing us to observe the specific impact of greening efforts. For the spatial-temporal analysis, the Integrated 

Nested Laplace Approximation (INLA) method with the stochastic partial differential equation approach (SPDE) 

were employed. INLA is a powerful Bayesian approach that efficiently models spatial and temporal dependencies in 

the data.  

In this study, we used the INLA model to analyze the paired greening and control sites with the Poisson 

regression framework. The outcome variable in the Poisson regression model was the count of crimes, allowing us 

to assess the relationship between the presence of greening sites and crime incidence. To address spatial 

autocorrelation, the INLA model incorporated an autoregressive term of order 1 (AR(1)). Furthermore, the 

population density was added to the model as an offset term, effectively adjusting for the underlying population at 

risk. For evaluation, we measured the Deviance Information Criterion (DIC), a Bayesian measure analogous to the 

Akaike Information Criterion (AIC). However, it is important to note that INLA does not provide p-values for 

assessing the significance of individual predictors. Instead, one can infer significance by examining the overlap 

between the 2.5% and 97.5% posterior estimates of the predictors with zero. 

 



Result 

The INLA mesh (See Figure 2) provides a visual representation of the 

spatial structure and discretization of the model. The mesh divides the 

study area into a set of small polygons or cells, which are used to 

represent the spatial domain. By examining the mesh, one can identify 

spatial patterns and trends, such as consistent increases or decreases in 

the variable across neighboring mesh cells.  

Table 3. Coefficient and Confidence Intervals of the Covariates in the Poisson Regression: Assaults with Firearm Count 

Variable Mean Sd ExpBeta 0.025quant  
(Lower) 

0.975quant 
(Upper) DIC 

Intercept -2.473 0.393 0.084 -3.247 -1.702 

12056.08 

Group_greenspace -0.129 0.035 0.879 -0.197 -0.061 
Percent of HH below 200% poverty level 1.766 0.408 5.850 0.967 2.566 
Percent of HH with no vehicle 4.609 0.491 100.429 3.646 5.573 
Percent of population underage 18 -0.010 0.006 0.990 -0.023 0.002 
Percent of population over age 65 0.017 0.009 1.018 -0.001 0.036 
Percent of population with a disability -0.029 0.009 0.971 -0.046 -0.013 
Percent of HH with limited English 0.043 0.013 1.044 0.017 0.069 
Percent of non-white population 0.001 0.002 1.001 -0.003 0.004 
Percent of HH eligible for food stamps 0.021 0.005 1.021 0.010 0.032 
Percent of population that are renters -0.036 0.004 0.965 -0.044 -0.028 
Homeowners who pay more than 30% of their income on 
mortgage payments 0.015 0.003 1.015 0.010 0.021 

Population with no high school diplomas -0.014 0.006 0.986 -0.026 -0.002 

Table 3 presents the estimated coefficient of the Poisson regression model, where the count of assault crimes 

involving firearms serves as the outcome variable. The coefficient for the "Group_greenspace" variable was 

estimated to be -0.129. This indicates that, when controlling for the effects of other variables, greenspace sites are 

associated with a statistically significant decrease of approximately 12.1% (1 - 0.879 = 0.121) in the expected 

assault gun count. The negative coefficient suggests that the greenspace within the studied areas is linked to a 

reduced likelihood of crime occurrence. 

However, if we fit the model for the total crime count by summing all types of crime, we see the greenspace effect is 

insignificant. Table 4 shows the estimated coefficient of the Poisson regression when the total crime count is used as 

an outcome variable.  

  

 

Figure 2. INLA mesh Distribution 
of Sties 



Table 4. Coefficient and Confidence Intervals of the Covariates in the Poisson Regression: Total Crime 

Variable Mean Sd ExpBeta 0.025quant  
(Lower) 

0.975quant 
(Upper) DIC 

Intercept 0.519 0.896 1.680 -1.280 2.285 

21290.82 

Group_greenspace -0.042 0.054 0.959 -0.148 0.065 
Percent of HH below 200% poverty level -0.993 0.590 0.370 -2.157 0.166 
Percent of HH with no vehicle 1.466 0.873 4.332 -0.255 3.182 
Percent of population underage 18 0.001 0.009 1.001 -0.016 0.019 
Percent of population over age 65 0.006 0.014 1.006 -0.023 0.034 
Percent of population with a disability -0.010 0.012 0.990 -0.035 0.014 
Percent of HH with limited English 0.094 0.026 1.099 0.043 0.144 
Percent of non-white population -0.006 0.003 0.994 -0.012 0.001 
Percent of HH eligible for food stamps 0.037 0.009 1.038 0.020 0.054 
Percent of population that are renters -0.003 0.007 0.997 -0.018 0.012 
Homeowners who pay more than 30% of their income on 
mortgage payments 0.002 0.004 1.002 -0.007 0.010 

Population with no high school diplomas -0.035 0.011 0.966 -0.056 -0.014 

 

Discussion 
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Appendix 

1. Modeling 

Spatial or spatio-temporal models are commonly employed in various domains, such as crime or disease mapping 

analysis. The principal objective of analyzing such data is to effectively smooth and forecast the temporal 

progression of specific response variables within a designated spatial domain. Assessing the security of a 

neighborhood often hinges on comprehending the geographical (or spatial) fluctuations of crime incidence. Spatial 

data can be defined as realizations of a stochastic process that is indexed by space. 

𝑌𝑌(𝑠𝑠) ≡ {𝑦𝑦(𝑠𝑠), 𝑠𝑠 ∈ 𝒟𝒟 ∈ ℝ2} 

The actual data can be then represented by a collection of observations 𝐲𝐲 = {𝑦𝑦(𝑠𝑠1), … ,𝑦𝑦(𝑠𝑠𝑛𝑛)}, where the set 

(𝑠𝑠1, … , 𝑠𝑠𝑛𝑛) indicates the spatial units at which the measurements are taken. The concept of spatial process can be 

extended to the spatio-temporal case, including a time dimension. The data are then defined by a process 

𝑌𝑌(𝑠𝑠, 𝑡𝑡) ≡ {𝑦𝑦(𝑠𝑠, 𝑡𝑡), (𝑠𝑠, 𝑡𝑡) ∈ 𝒟𝒟 ∈ ℝ2 × ℝ} 

and are observed at 𝑛𝑛 spatial locations or areas and at 𝑇𝑇 time points. Consequently, a comprehensive approach to 

addressing this issue involves modeling the mean for each unit (i-th) through an additive linear predictor, which is 

defined on a suitable scale. 

𝜂𝜂𝑖𝑖 = 𝛼𝛼 + � 𝛽𝛽𝑚𝑚

𝑀𝑀

𝑚𝑚=1

𝑥𝑥𝑚𝑚𝑖𝑖 + �𝑓𝑓𝑙𝑙

𝐿𝐿

𝑙𝑙=1

(𝑧𝑧𝑙𝑙𝑖𝑖), 𝑖𝑖 = 1,⋯ ,𝑛𝑛. 

By varying upon the form of the functions 𝑓𝑓𝑙𝑙(⋅), this formulation can accommodate a wide range of models, from 

standard and hierarchical regression to spatial and spatio-temporal models. 

 


